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Effects of viscous dissipation in natural convection 
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The effect of viscous dissipation in natural convection is appreciable when the 
induced kinetic energy becomes appreciable compared to the amount of heat 
transferred. This occurs when either the equivalent body force is large or when 
the convection region is extensive. Viscous dissipation is considered here for 
vertical surfaces subject to both isothermal and uniform-flux surface conditions. 
A perturbation method is used and the first temperature perturbation function is 
calculatedfor Prandtl numbers from to lo4. The magnitude of the effect 
depends upon a dissipation number, which is not expressible in terms of the 
Grashof or the Prandtl number. 

Introduction 
It has been recognized that significant viscous dissipation may occur in natural 

convection in various devices which are subject to large decelerations or which 
operate at high rotative speeds. In  addition, important viscous dissipation effects 
may also be present in stronger gravitational fields and in processes wherein the 
scale of the process is very large, e.g. on larger planets, in large masses of gas in 
space, and in geological processes in fluids internal to various bodies. 

Such processes have received some attention particularly with respect to 
processes in rotating cavities. Investigation of the possibility of turbine blade 
cooling by natural circulation of an internal coolant resulted in an analysis by 
Lighthill ( 1953) which delineated flow patterns and predicted heat-transfer 
characteristics. Ostrach (1957) considers the effects of viscous dissipation in such 
passages with fully developed velocity and temperature profiles (i.e. a one- 
dimensional problem). These studies are primarily concerned with laminar 
processes in steady flow. 

The various studies, and a general similarity analysis, show that the relative 
magnitude of the viscous dissipation effect is given by a dissipation number. This 
number is a completely independent parameter. It hasno correspondencewith the 
Prandtl number nor with the Grashof number, the latter being generally thought 
to be the important parameter for laminar instability and flow transition. There- 
fore, neither the value of the Prandtl number nor the upper limit for laminar 
processes preclude important viscous dissipation effects, as has been suggested. 

The present paper is a two-dimensional boundary-layer analysis of the effects 
of viscous dissipation for external flow about a surface whose generator is parallel 
to the body force field which causes the motion. Prandtl numbers of 10-2, 0.72, 
102 and 104 are considered. A perturbation method is used. Circumstances of 
important viscous dissipation are discussed. 
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Analysis 
The boundary-layer equations which apply for natural convection from a sur- 

face to a fluid at rest have been established by Schmidt and Beckmann through 
experimental observations of flow fields and by, for example, Ostrach (1953), 
through an order-of-magnitude analysis. As for forced convection, these equa- 
tions need include neither an allowance for forces normal to the surface nor 
second derivatives parallel to the surface for the thin velocity and thermal layers 
which result when the relevant flow parameter is large. This parameter is the 
Grashof number for natural convection. Therefore, the boundary-layer equations 
for steady-state natural convection in a fluid of uniform, constant properties on a 
semi-infinite plate (parallel to the body force) are: 

and 

where u and v are the velocity components, 8 is the temperature excess (t - tm),  
z is measured from the leading edge for the induced flow, and y is the distance out 
perpendicular to the plate. The plus and minus signs in (1) apply for heating and 
for cooling the fluid, respectively. The convection-induced pressure gradient 
neglected in (1) is considered in the Discussion. Boundary conditions which 
apply for all cases are: 

a t y = O f o r x > O ,  u = v = O ;  asy-+co, u+O, 8+0. 

There are a number of surface-temperature or heat-flux boundary conditions 
which are of interest. However, the uniform temperature and the uniform heat 
flux (a") condition represent two different cases of frequent practical importance. 
These cases are analysed here. The additional boundary conditions are, therefore, 

a t  y = 0: 8 = ( to - t t , ) ,  isothermal surface; 
q" = - k: adlay, uniform flux surface. 

The temperature excess 8 is replaced by a generalized temperature q5 defined for 
the two cases as follows: 

where to is the surface temperature for the isothermal case and Gr, is the local 
Grashof number for the uniform flux case and is defined in equation (1 1). The 
surface boundary conditions in terms of q5 are: 

a t  y = 0: q5 = 1, isothermal surface; 
uniform flux surface. q5' = - 1, 
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Introduction of a stream function @(x, y) reduces equations (l) ,  (2) and (3) to 

and 

The stream function y% and temperature function q5 are written in terms of 
perturbation functions fi and q5$ as follows: 

@ = (8) 

q5 = $ofmsq51+(m42q52_+..., (9) 

(Gr,J1/m [f, f m€f1 k ( m ~ ) ~ f ~  f . . .I, 

where m = 4 for the isothermal and 5 for the uniform-flux surface condition and 
the plus and minus signs apply for heating and cooling the fluid, respectively. The 
dimensionless quantity Gr, is given as follows for the two cases: 

Gr, = Ig/3x3(to - t,)/v21, isothermal; (10) 

Gr, = [ g,8x4q"/rCv2 I ,  uniform flux. (11) 

The functions f,, fl, . . . and q5,, q51, . . . depend only upon the similarity variable 

Comparison of (7) and (9) indicates that the second approximation function q51 
will include the effect of viscous dissipation if E is chosen as 

8 = g/3x/cp. (13) 

Thus E is the local dissipation number, which is equal to the kinetic energy of the 
flow divided by the heat transferred to the fluid. 

The result of choosing e as in (13) is that fo and 4, are merely the well-known 
zero dissipation solutions given by Pohlhausen (1930), Schuh (1948), and Ostrach 
(1953) for the isothermal case and by Sparrow & Gregg (1956) for the uniform- 
flux case. 

The differential equations (6) and (7) are written in terms of the perturbation 
functions given in (8) and (9). For each case, i.e. isothermal and uniform flux, 
four equations are obtained for the four functionsf,, q5,,f1 and The functionsf, 
and q52 do not include directly an effect of viscous dissipation since the dissipation 
term in the energy equation does not contain terms of even order in E .  Higher 
approximations are not considered further. The equations with the relevant 
boundary conditions are written below for the two cases. 

Isothermal 
f t+3f0  f;-Zf;"+, = 0, 

q% + SPrf, 4; = 0, 
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Uniform jlux 
f :+4fo f ; -3 f ;2+$o  = 0, (18) 

& + W 4 f o  $6 -f6 $0)  = 0, (19) 

f :  + 4fof;' - 1 If6 f; + 9f;fi + $1 = 0, (20) 

#; + Pr(gf, $A + 4f0 $; - 6fh $, -f ; $o +f3 = 0; (21) 

a t 7  = 0, f o  = f 6  = fl = f ;  = & = 0, $6 = -1; asp-+co, f;, $07 f ; ,  and$,-+ 0. 
If the temperature effect of viscous dissipation is assumed to have a negligible 

effect (through buoyancy) on the velocity distribution (this amounts essentially 
to assuming fl = O ) ,  the following simpler equations yield the second approxi- 
mation $1 of the temperature distribution. 

Isothermal 

a t  7 = 0, $, = 0;  as 7 -+ 00, $1 -+ 0. 

Uniform jlux 

~ ; + P r ( 3 9 , $ 6 - 4 f 6 $ , + f ~ 2 )  = 0;  

#; + Pr(4fo $; - 6f6 $1 + f12)  = 0;  

a t  

or equations (18) and (19), to calculate $, and $;. 

= 0,  4; = 0;  as 7 -+ 00, $1 -+ 0. 
Equation (22), or (23 ) ,  is used in conjunction with equations (14 )  and (15), 

Solutions 
The foregoing equations were solved numerically on a Burroughs 220. Calcu- 

lations for Pr = 0.72, lo2 and lo4 for the isothermal case and for Pr = 102 
for the uniform-flux case were based upon the simpler approximate relations for 

equations (22) and ( 2 3 )  (i.e. f, was taken to be zero). This procedure was 
checked for accuracy by calculating the full $17fi solution for the isothermal case 
for Pr = 102 from (16) and (17). The difference in $ ; ( O ) ,  which is the critical 
quantity for heat transfer, is 5 yo. 

The nature of the effect of viscous dissipation upon the temperature distribu- 
tion within the boundary layer may be seen in figure 1, where $o and are plotted 
for both the isothermal and uniform-flux cases. The effect is seen to extend 
throughout the thermal boundary layer and to be a maximum at the wall for the 
case of uniform flux. The effect upon the heat flux is seen in figure 2. The effect of 
viscous dissipation is again present throughout the boundary layer, the effect 
being the greatest at the wall for the isothermal case. 

The principal results of the calculations are listed in table 1. For the isothermal 
case the slope of the temperature perturbation function at  7 = 0 is given and for 
the uniform-flux case the value of the function itself is given a t  7 = 0. Similar 
information is also given for the zero-dissipation solutions to a higher accuracy 
than heretofore available in the literature. In  addition, &(O) is given for a 
Prandtl number of lo4. This value has not previously been available. 

It is interesting to note that the ratio $;(O)/$A(O) for the isothermal case has 
closely approached an asymptotic value in the Prandtl-number interval lo2 to 104. 
However, it  was not possible to estimate this value from these results. 
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7 
FIGURE 1. Temperature distributions in 
the boundary layer; Pr = 100; -, 
isothermal; - - - uniform flux. 

FIG~~RE 2. Heat-flux distributions in 
the boundary layer ; Pr = 100 ; -, 
isothermal; - - - uniform flux. 

Isothermal Uniform flux 
7 A 

-3 
h r -3 

Pr $20) & ( O )  $K(O)/&I(O) $ M O )  ~ 1 ( 0 ) / ~ l l ( O )  
- - - 0.01 - 0.080592 0.003497 - 0.04340 

0.72 - 0.50463 0.07506 - 0.1487 - - - 
102 - 2.1914 0.4877 - 0.2226 0.46568 0.04446 0.09547 
104 - 7.0913 1.686 - 0.2378 - - - 

TABLE 1. Results of numerical solutions 

Effects upon heat transfer 
The effect of viscous dissipation is to inhibit heat transfer (or to require a higher 

temperature difference) when the surface transfers heat to the fluid and to aug- 
ment transfer (or to require a lower temperature difference) when heat is trans- 
ferred to the surface. 

For the isothermal case, the local Nusselt number is defined below and is 
calculated from equation (9) in terms of the solutions of the differential 
equations as 
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The effect of viscous dissipation on heat transfer is seen to be zero at  the leading 
edge and to increase along the surface. The Nusselt number based upon the 
average convection coefficient for a surface of length L is 

The limits of the applicability of laminar boundary-layer analysis for natural 
convection are not known in a general way. Measurements made in air and 
scattered heat-transfer data suggest that the limit may be expressed in terms of 
Gr, and that the range of laminar boundary-layer transport for gases and for a 
number of common liquids is not less thant 

lo4 < Gr, < 5 x lo8. 

Viscous dissipation effects, if important, would appear near the upper limit. The 
upper limit of plate height and temperature difference is estimated as follows: 

x3(t0-tco) < 5 x 1Oyv”gp). 

The effect of viscous dissipation in the case of an assigned surface heat flux is to 
make necessary a larger difference between to and t ,  for the convection of a heat 
flux to the fluid. The surface temperature is calculated from the solution 

There is an even greater uncertainty concerning the limit of laminar transport 
on a surface with an assigned flux condition. However, experimental evidence 
for gases indicates that the limit is in terms of the Grashof number and at a value 
not greatly different from that which applies for an isothermal surface when the 
uniform-flux Grashof number is expressed in the same form. The order of magni- 
tude relation between the two Grashof numbers is 

The limitation on plate height and surface flux is 
x4q” < 10lykv2/gp). 

Discussion 
The dissipation number gpx/c, is small for most ordinary engineering devices 

with common fluids for the gravitational field strength of the earth. For example, 
the quantity gplc, remains in the range 10-5to 10-4ft.-1 for fluids as different as 
liquid sodium, mercury, gases at ordinary temperatures, water, and viscous 
silicones. j: Therefore, for such fluids, important viscous dissipation would result 
only a t  very large values of x not commonly encountered and for which the flow 
would probably be turbulent. 

However, in rotating systems the dissipation number may be large. This may 
t See, for example, the discussion in Gebhart (1961). 
$ One important exception to this conclusion is gases (and liquids) a t  very low 

temperature, where P I C ,  may be large. 
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occur for flows well within the laminar limit because, although the Grashof 
number is linearly dependent upon the field strength, it  is dependent upon the 
third power of x. Therefore, the product gx in the dissipation number is propor- 
tional to 9% for a given value of the Grashof number. 

The foregoing analysis would apply to natural convection on the radial surfaces 
of cavities which have a large width compared to the thickness of the convection 
layer. A number of studies? indicate that this condition is effectively met even 
for relatively high-aspect-ratio cavities. However, these results and those cited 
in the Introduction would apply only under conditions in which the Coriolis force 
arising from the induced flow is small compared to the centrifugal force which 
induces the flow. These conditions have not been established. 

It is necessary to consider whether or not appreciable viscous dissipation 
necessarily implies processes for which flow-induced pressure gradients are also 
appreciable. Viscous dissipation is accounted for by the last term in (3) whose 
magnitude relative to the other terms in the energy equation is indicated by the 
dissipation number gPx/c,. This number is not expressible exclusively in terms of 
the Grashof and Prandtl numbers. It is shown below that the effect of the induced 
pressure gradient upon the flow does depend exclusively upon the Grashof and 
Prandtl numbers and is not, therefore, directly connected to the magnitude of the 
viscous dissipation effect. 

Equation (1) neglects the x-direction pressure gradient which arises in the 
remote fluid due to the induced flow. The relative effect of the pressure gradient 
is evaluated by comparing the resulting pressure force with the viscous force in 
the boundary layer. The pressure gradient, exclusive of the hydrostatic contri- 
bution, is calculated from the Bernoulli equation, written outside the boundary 
layer as p + J-pVz = const., 

where V = vm is the asymptotic value of the velocity component normal to the 
surface, which arises due to convection. This component is estimated from the 
boundary-layer solution for the case of an isothermal plate as 

wherefo(co) is the limit offo as y + co. The pressure gradient is, therefore, 

The viscous force is converted to similarity variables as follows: 

Since the pressure gradient normal to the surface is of negligible magnitude for 
a vertical surface, the pressure gradient calculated above may be applied over the 
whole boundary layer. Therefore, the ratio of pressure to viscous forces is 

t Lighthill (1953), Batchelor (1954), and Poots (1958). 
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This estimate does not apply near the leading edge because of the singularity 
at  x = 0. The quantity r(Gr,)& is thus seen to be a function only of the Prandtl 
number and varies monotonically from 20 to 0.02 over the Prandtl-number 
range from to  lo2. Comparisons of the pressure force with the inertia and 
buoyancy forces give similar results. Thus for Gr, > lo4, pressure forces may be 
significant for liquid metals but are negligible for higher Prandtl number fluids. 

The writer wishes to express his thanks for the help given by Miss A. Walbran, 
who programmed the calculations, and Mrs Leora Decker, who typed the 
manuscript. Acknowledgement is made to the National Science Foundation 
which supported this analysis under grant NSF-G 10169. 
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